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We solve exactly a simple model of trend following strategy, and obtain the analytical shape of the profit per trade distribution. This distribution is non trivial and has an option
like, asymmetric structure. The degree of asymmetry depends continuously on the parameters of the strategy and on the volatility of the traded asset. While the average gain
per trade is always exactly zero, the fraction f of winning trades decreases from f = 1/2 for small volatility to f = 0 for high volatility, showing that this winning probability

does not give any information on the reliability of the strategy but is indicative of the trading style.

A question often asked by investors to fund managers, besides the aver-
age return of their strategies, is: “What is your fraction of winning
trades?” Implicitly, they expect the answer to be larger than 50% , as this
would indicate that the fund manager is more frequently right than
wrong, and therefore trustworthy. We want to show in this paper that this
fraction is in fact meaningless. It depends entirely on the trading style of
the manager, and tells very little about the consistency of his returns. It
is clear that one can make money on average even if the fraction f of win-
ning trades is low, provided the average gain per winning trade G exceeds
the average loss per losing trade, £. The condition is, clearly:

fG6>@a-NL. (1)

Since asset prices are very close to being pure random walks, any statisti-
cal signal exploited by systematic traders has an extremely small signal
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to noise ratio. The average profit per trade for any hedge fund is bound to
be very small, which means that the above inequality is close to an equal-
ity. If the typical holding period of winning trades is Tz and that of los-
ing trades T;, one expects, for a random walk of volatility o:

L~ oy (2)

Therefore, the fraction of winning trades is in fact a measure of the ratio
of the holding periods of winning trades to that of losing trades:

() g

For example, a 40% fraction of winning trades merely indicates that
(unless the manager is really lousy) the typical holding period of winning

G ~oTg,

WILMOTT magazine



TECHNICAL ARTICLE

trades is ~2 times that of losing trades. This, in turn, means that the
manager is probably mostly trend following, since by definition a trend
following strategy stays in position when the move is favorable, but closes
it in case of adverse moves. Hence, conditioned to a winning trade, the
holding period is clearly longer. The opposite would be true for a contrari-
an strategy. Let us illustrate this general idea by two simple models. The
first one is completely trivial and not very interesting besides driving our
point home. The second model is much richer; it can be solved exactly
using quite interesting methods from the theory of random walks and
leads to a very non trivial distribution of profits and losses. Besides its
intrinsic interest, the model elegantly illustrates various useful methods
in quantitative finance, and could easily be used as a basis for a series of
introductory lectures in mathematical finance. The outcome of our calcu-
lations is that although the daily P&L of the strategy is trivial and reflects
the statistics of the underlying, the P&L of a given trade has an asymmetric,
option-like structure!

The first model is the following: suppose that the price, at each time
step, can only move up +1 or down —1 with probability 1/2. The trend
following strategy is to buy (sell) whenever the last move was +1 (—1) and
the previous position was flat, stay in position if the last move is in the
same direction, and close the position as soon as the move is adverse.
Conditioned to an initial buy signal, the probability that the position is
closed a time n later is clearly:

pn=(1/2)". (4)

If n =1, the trade loses 1; whereas if n > 1, the trade gains n — 2.
Therefore, the average gain is, obviously:

Y (n—2)(1/2)" =0, (5)

n=1

as it should, whereas the probability to win is 1/4, the average gain per
winning trade G is 2 and the average loss per losing trade £ is 1. The aver-
age holding period for winning trades is:

it 9
To=4) n(1/2)" = X (6)
n=3

Let us now turn to our second, arguably more interesting model,
where the log-price P(t) is assumed to be a continuous time Brownian
motion. This model has well known deficiencies: the main drawbacks of
the model are the absence of jumps, volatility fluctuations, etc. that
make real prices strongly non-Gaussian and distributions fat-tailed’.
However, for the purpose of illustration, and also because the continu-
ous time Brownian motion is still the standard model in theoretical
finance, we will work with this model, which turns out to be exactly sol-
uble. We assume that on the time scale of interest, the price is driftless,
and write:

b _ dw (t 7
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where dW (t) is the Brownian noise and o the volatility. From these log-
returns, trend followers form the following “trend indicator” ¢ (t), obtained
as an exponential moving average of past returns:

t
dt) =0 / e T aw (), (8)

where 7 is the time scale over which they estimate the trend. Large posi-
tive ¢ (t) means a solid trend up over the last r days. Alternatively, ¢ (t)
can be written as the solution of the following stochastic differential
equation:

d¢ = !

= ——pdr+odW (. 9)

The strategy of our trend-follower is then as follows: from being initially
flat, he buys +1 when ¢ reaches the value ® (assuming this is the first
thing that happens) and stays long until ¢ hits the value —®, at which
point he sells back and takes the opposite position —1, and so on. An alter-
native model is to close the position when ¢ reaches 0 and remain flat
until a new trend signal occurs. The profit G associated with a trade is the
total return during the period between the opening of the trade, at time
t, (¢ (t,) = £®) and the closing of the same trade, at time t. (¢ (t.) = F).
More precisely, assuming that he always keeps a constant investment level
of 1 dollar and neglecting transaction costs,

2
G= / o dW (b). (10)
o
We are primarily interested in the profit and loss distribution of these
trend following trades, that we will denote Q (G). A more complete
characterization of the trading strategy would require the joint distri-
bution Q(G,T) of G on the one hand, and of the time to complete a
trade T=t.—1t, on the other; this quantity is discussed in the
Appendix. Obviously, G and ¢ evolve in a correlated way, since both are
driven by the noise term dW. For definiteness, we will consider below
the case of a buy trade initiated when ¢ = +®; since we assume the
price process to be symmetric, the profit distribution of a sell trade is
identical. Now, the trick to solve the problem at hand is to introduce
the conditional distribution P(g|¢,t) that at time t, knowing that the
trend indicator in ¢, the profit still to be earned between t and t. is g.
This distribution is found to obey the following backward Fokker-Planck
equation:

0P(glp. D) _ ¢ OP(gl. D

ot T ¢ 1)
o? [azp(glfﬁ,t) _232P(g|¢,t) 82P(g|¢,t)]
2 g2 9pdg 0g> ’

However, since ¢ is a Markovian process, it is clear that the history is irrele-
vant and at any time t, the distribution of profit still to be made only
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depends on how far we are from reaching ¢ = —®, thatis, P(g|¢, t) depends
on ¢ but not on t. Therefore, one finds the following partial differential
equation:

0P(glg) | o't [82P<g|¢> _,P*PGl9)

BZP(glqb)] —0
dp 2 o

12
g2 apog dg? (12)
Eq. (12) has to be supplemented with boundary conditions: obviously
when ¢ = —® the yet to be made profit must be zero, imposing:

P(glp = —®) = 8(g). (13)

The final quantity of interest is the profit to be made when entering the
trade, i.e:

QG) = P(g =Glp = +). (14)

We now proceed to solve Eq. (12). First, it is clear that all the results can
only depend on the ratio ®/o /7, i.e. on the width of the trend following
‘channel’” ® measured in units of the typical price changes over the
memory time t, that is, the order of magnitude of the expected gains of
the trend following strategy. One expects in particular that in the limit
®/0/T — o0, the distribution of gains will become Gaussian, since the
time needed to reach the edge of the channel is then much larger than
the memory time of the process. We will from now on measure ® and G
in units of o4/7, and therefore set 02t = 1 hereafter. Now, Fourier trans-
forming P(g|¢) with respect to g:

dr .
P(glo) Z/Eﬁ‘“g%(tﬁ), (15)

one obtains an ordinary differential equation for W, (¢):

PW(¢) 26+ M)a‘Px(db)

— 2 —
75 as M B@ =0 (16)

This is known as the Kummer equation (or, after a simple transforma-
tion, as the Weber equation)*3. The general solution is the sum of two
confluent Hypergeometric functions ;F;, with coefficients that are deter-
mined by two boundary conditions. We already know that the boundary
condition at —® should be ¥, (—®) = 1, VA. The second boundary condi-
tion turns out to be that ¥, (¢) should be well behaved for ¢ — o0, i.e.
not grow exponentially with ¢. A way to be convinced and get some intu-
ition on the solution is to expand W, (¢) for small A as:

)"2
V(@) = Yo (@) + M (P) — —val@) + ... (17)

Plugging this into Eq. (16), one finds:

Yolgp) =1, Yi(¢) = 0; Yy — 2y = —2. (18)

The first two results are expected and simply mean that P(g|¢) is normal-
ized for all ¢, and that the average gain is identically zero, as must indeed
be the case of any strategy betting on a random walk. The last equation
is more interesting; the only reasonable solution of this equation is:

@ oo
V() = 2 f due” / dve™, (19)
- u

which for large ¢ behaves as 1n ¢. This is indeed expected: if the trade did
open when ¢ hits a very large value instead of at +®, the time needed for
¢ to come back to values of order & can be obtained by solving Eq. (8)
without the noise term, giving T ~ 7 ln ¢. The total gain is the sum of
~ T/t random contributions, its variance is thus expected to be ~ In ¢. In
fact, in the limit ¢ — oo, the distribution of gains indeed becomes exact-
ly Gaussian, as can be seen by writing:

W (p) =e THO. (20)
The corresponding opE for Z; (¢) reads:
)\'2
?Z’Z +irZ — 7' 4 2¢7 —2 =0, (21)

from which one immediately finds that for ¢ — oo, Z ~ In ¢ independ-
ently of 1. Therefore, in that limit, the characteristic function W, (¢)
indeed becomes Gaussian (in A and thus in g). The above equation on Z
will be useful below to extract the large A behaviour of W,. The conclu-
sion of this analysis is that the large ¢ behaviour of W, (¢) is a decreasing
power-law:

W (p) ~ oM 12. (22)

This gives us our second boundary condition. The correct solution of our
problem can then be written as:

Wi.(¢)
v =, 23
(@) W (—d) (23)
with W the following combination of hypergeometric functions:*
Wi.(¢) =+F (AZ ! (¢ + 7»)2>
= —, = i
A 141 42
221
r{=4+= 24
<4 + 2) ) (24)

2 3 (¢+ix)2>
_ = ,

N =

A
<x2> (¢ +ir) 1 Fy <I +
| —
4
related to the so-called the Weber function®. One can check, using the
known asymptotic behaviour of the hypergeometric functions, that this
particular combination indeed decays as ¢~*'/? for large ¢.

From these expressions, one can reconstruct the whole distribution
Q(G), that we now describe. As already mentioned above, in the limit
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Figure 1: Shape of the distribution of gains, Q(G), for a rescaled chan-
nel width @ = 1. Note the strong asymmetry of the distribution, which

peaks at G*~ —1.88, with a total probability of loss of 0.635. When
the strategy makes money, the average gainis G = 2.164.

® — oo the distribution becomes Gaussian. As ¢ decreases, the distribu-
tion becomes more an more positively skewed: the fraction of winning
trades decreases, but the average gain per winning trade becomes larger.
This is illustrated in Fig. 1 where we plot Q (G) for the intermediate case
® = 1.1t is clear that the most likely profit is negative; the probability to
lose is in that case 1 — f ~ 0.635. The distribution can be characterized
further by studying its asymptotic tails for G — =£oo . This can be done by
observing that W, (¢) has poles for A imaginary, corresponding to zeros of
W, (=®). For ® =1, we find that the zeros closest to A =0 are
Ay = 0.432i and »_ = —5.058i, translating into the following large |G|
behaviour:
QG) ~ ™20 (G- +00);  QG) ~ e (G- —c0),  (25)

showing again the strong asymmetry in the profit and loss distribution.

The large A behaviour of W, (¢) is important to control, in particular
to determine accurately the numerical Fourier transform that gives Q (G).
Using Eq. (21), we find:

U, (@) ~ N [exp (mq> - gqﬂ/z\/W)] ‘ (26)

In the limit & — 0, the distribution becomes maximally skewed. Since
the sell threshold is so close to the buy threshold, most events correspond
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to a small (0(2®)) immediate loss. Only with a small probability, also of
order @, is the strategy leading to an order 1 profit. In the small & limit,
one finds that the small A expansion of W, (¢) reads:

InW, (®) ~ —@ (Var? — 2ir —2.38.0% +...), (27)

which translates into a diverging skewness, given by (G®)/(G?)3/% ~
1.798/+/® and a diverging kurtosis (G*)/(G*)* ~ 4.545/®. In that limit,
Q(G) becomes a § peak at G = —2® of width ® and weight 1 — ®, plus a
regular function of total weight ®. The distribution Q (G) decaying expo-
nentially for G > 1, with a rate A, (® — 0) ~ 0.810i, whereas for the G
negative region, we find that A_(® — 0) ~ —i/®, in agreement with our
statement that Q (G) becomes sharply peaked around G = —2®.

We have performed a numerical simulation of the above simple
trend following strategy on the Swiss Franc against Dollar, using 5358
days between 1985 and 2005, with r = 5 days, and choosing the chan-
nel width ® = 021, where o is the historical volatility over the whole
time period. The result for Q (G) is given in Fig. 2, and compared with
the theoretical prediction. The agreement is only qualitative, mostly
due to the fact that the trading is in discrete time (daily) and to non
Gaussian character of the returns which makes the distribution Q (G)
fatter than predicted by the above model (see Fig. 3). However, the
strong asymmetry is indeed observed; in particular, the loss probabili-
ty is found to be ~ 0.605, not far from the theoretical prediction of
0.635.

0.5 T T T T T T T T T T T T T
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Figure 2: Simulated distribution of gains for a trend following
strategy on the Swiss Franc/Dollar, compared to our theoretical
prediction based on a Gaussian model for the returns. As expect-
ed, the empirical distribution is indeed asymmetric, but also fatter
than predicted.
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Figure 3: Simulated distribution of the daily returns (in units of the
daily volatility) of the trend following strategy. This distribution is
nearly symmetric, but clearly displays non Gaussian tails (a Gaussian
distribution is shown in dotted line).

Conclusion

We have therefore solved exactly a simple model for the profit and loss-
es of a trend following strategy, and obtained the analytical shape of the
profit distribution per trade. This distribution turns out to be highly
non trivial and, most importantly, asymmetric, resembling the distribu-
tion of an option pay-off. The degree of asymmetry depends continuous-
ly on the parameters of the strategy and on the volatility of the traded
asset; while the average gain per trade is always exactly zero, the frac-
tion of winning trades decreases from f = 1/2 for small volatility to
f = 0 for high volatility, showing that this probability does not give any
information on the reliability of the strategy but is indicative of the
trading style. In fact, we could repeat the same calculations as above for
a ‘mean-reverting’ strategy, where the position of the trade is to sell
when the trend indicator is high, and vice-versa. It is clear that the dis-
tribution of gains in that case is the mirror image of that computed
above; for a mean reverting strategy, gains are more frequent than loss-
es, but of a smaller amplitude. Note that the non trivial structure of the
gain distribution entirely comes from the conditioning on being associ-
ated to a given trade. If one asks, for example, for the unconditional distri-
bution of the daily returns of the strategy, then it is perfectly symmetrical

and reproduces exactly the return distribution of the underlying asset
(see Fig. 3)!

Appendix: Duration of the trades

In this appendix, we give an alternative derivation of the gain distribu-
tion Q (G) which also allows to gather some information on their dura-
tion. The method presented in the main text is elegant precisely because
it gets rids of all temporal aspects. Suppose that at t = 0 a buy trade is
opened, with ¢ = +®. We will now focus on g’, the profit accumulated
up to time t. Let us introduce the quantity R(¢, g, t) as the probability
that the trade is still open at time t, has accumulated a profit g’ and such
that the trend indicator is ¢. After Fourier transforming on g’, this quan-
tity admits the following path integral representation:

R(‘f’, A = 67A2/2+(¢—ik)‘/2—(¢—i)\)2/27t/1

t

/w(t)=¢—il 1
X Dou)exp | — — du
P(t=0)=d—iL 2072 Jo (28)

2 2
X ((d—w) + <p_2 + A%ot +V(¢)>} ,
du T

where V(¢) enforces the constraint that ¢ never touched the lower edge
of the channel —®, i.e. V(p) =0 if ¢ > —® and V(¢) = +o0 if ¢ < —D.
Using standard techniques, one sees that the path integral is the
Feynman-Kac representation of the imaginary time Green function of
the quantum harmonic oscillator with an impenetrable wall at ¢ = —®.
Setting again o2t = 1 and using a wave function representation, one can
therefore write:

R, 2 1) = e /2H@TW2ZOZI2 N "y (¢ — i0) Y (@ — in)e Y7, (29)
m

where ¥, and E,, are the eigenvectors and eigenvalues of a quantum har-

monic oscillator, obeying:

20 T2 T 2

1 92 22—
[ ? ] Vm(9) = EnYm(4). (30)

with the following boundary conditions: ¥,,(—®) = 0 (hard wall condi-
tion) and ¥, (¢ — oo0) — 0. These two conditions lead to a quantized
spectrum of eigenvalues, indexed by an integer number m; as expected,
the ¥, (¢) can again be written in terms of Weber functions?.

From R(¢, A, t) one can compute the flux of fictitious particles just
hitting the wall at time t = T and leaving the system, given by:

1 90«
](‘p?)‘st:T):_E ﬁR«Ps}‘vt) ¢:7¢5 (31)
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which, for ¢ = @ is precisely the joint probability that the profit of the
trade is G and its duration is T (Fourier transformed over G.) The integral
over all G’s, corresponding to A = 0, gives the unconditional distribution
of trade times. The result can be written in a fully explicit way if the trade
closing condition is at ¢ = 0, in which case the eigenvectors v, are simply
the odd levels of the harmonic oscillator and can be expressed in terms of
Hermite polynomials. More generally, the distribution of duration decays
at large times as exp(—E,T/t), where E, is the ground state energy of the
constrained Harmonic oscillator. One can also check that the integral over
all Ts of J(¢ = —®, A, T) obeys the same ODE (with respect to the initial
condition ¢ = +® and up to a sign change of 1) as ¥, in the main text, as
it should since the former quantity then becomes the Fourier transform
of Q (G), with the same boundary condition (g’ = 0 when ¢ = —®).
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FOOTNOTES

1. see e.g. J.P. Bouchaud, M. Potters, Theory of Financial Risks and Derivative Pricing,
Cambridge University Press (2004).

2. see e.g. |. Gradshteyn, I. Ryzhik, Tables of Integrals, Series and Products, Academic
Press, (1980) p. 1057-1059.

3.see: W. N. Mei, Y. C. Lee, Harmonic Oscillator with potential barriers, J. Phys. A 16,
1623 (1983).

4. Note that we cannot write W as the Kummer function of the second kind U because as
we follow the solution from —® to +® we run into a branch cut of U at ¢ = 0 when
the third argument falls on the negative real axis. Eq (24), on the other hand, does not
have a branch cut at ¢ = 0.
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