SciComp SLV Calibrator

Halliburton sheds another 4,000 jobs


Oil field services giant Halliburton shed another 4,000 jobs in the final three months of 2015, as the Houston-based company continued to aggressively cut costs amid the worst oil crash in decades. 

With the latest job cuts, Halliburton has reduced its global workforce by 25% (a total of about 22,000 employees since its peak in 2014). And more cuts could be on the way if a recovery in crude prices stalls, company executives said Monday morning.

Please read more here.

Schlumberger Fires Another 10,000 Workers


Schlumberger fires another 10,000 workers to cope with a crude oil  market collapse that’s forced its customers to slash spending for two consecutive years.  

Please read more here.

Cheap oil means bankers are getting laid off

The oil slump is draining billions of dollars from the banking system, stock markets are volatile, investment is slowing and global banks are firing workers to boost returns.

Please see more here.

Shell Fires 10,000 Workers


As its fortunes collapse due to falling oil prices, Royal Dutch Shell PLC (NYSE: RDS-B) will fire 10,000 people in an effort to bolster margins.

Please read more here.

Chevron: Trading Analyst Jobs (London)

Chevron is accepting online applications for the position of Trading Analyst located in London, United Kingdom through 27th January 2016 at 11:59 p.m. Please see the job details here.

De-Dollarization: Russia's Oil Benchmark Futures to Be Priced in Rubles

Russia has taken a significant step which will undermine the current Wall Street oil price monopoly: Russia's own crude oil benchmark futures contract will price oil in rubles and no longer in US dollars, American-German researcher, historian and strategic risk consultant F. William Engdahl remarks.

"The move is part of a longer-term strategy of decoupling Russia's economy and especially its very significant export of oil, from the US dollar, today the Achilles Heel of the Russian economy… It is part of a de-dollarization move that Russia, China and a growing number of other countries have quietly begun," the American researcher writes in his recent article for New Eastern Outlook.

Please see more here and here.

Russian Military Alleges NATO Member Turkey is Stealing Oil from Syria (video)

Please see more here.

Crude oil got slammed after OPEC reportedly decided not to cut output

Crude oil prices collapsed after a report crossed that the 12-member oil cartel OPEC is not cutting its production levels.

According to Bloomberg, a Nigerian official said the group decided to maintain production at 31.5 million barrels per day. 

Please read more here.

Russia Launches Crude Oil Benchmark to End Dependence on Dollar, Brent


In November, Russia is set to launch test trading of its new domestic-produced benchmark oil. It is expected to drive up the price for Russian oil and end its dependence on Brent pricing. That may result in trading Russian oil in rubles.

Please read more here.

Bill Gates: “Bring Math Skills To The Energy Problem”

by Mark P. Mills


Bill Gates is right.   In a feature interview, mainly about energy, in the November issue of The Atlantic, Bill Gates begins with a pointed challenge that we have to bring “math skills to the problem” when talking about changing global energy use.  May I second that notion.

The central reality today is that hydrocarbons—oil, natural gas, and coal—supply 90% of global energy.  And in the future, the world will need a lot more energy, not less.  If policymakers want to change that equation in order to avoid the use of the carbon in the hydrocarbons, there are no easy solutions.  In fact, any technological solution will require, in Bill Gates words, “a miracle.”


And now for some of the math that Gates is clearly aware of, that illustrates the magnitude of the challenges in changing the world’s energy system.  (Gates’ statements here are in no particular order, but taken as they occur in the interview.)

1. “[F]or energy as a whole, the incentive to invest is quite limited, because unlike digital products … almost everything that’s been invented in energy was invented more than 20 years before it got scaled usage.”

  • 1905 and 1939 were the last times the world saw foundational inventions in energy sources.  In 1905 Einstein received the Nobel Prize for the photoelectric effect leading to solar cells, and 1939 at the University of Chicago with the proof of nuclear fission.  Now, about a century later, those two energy sources combined supply less than 4% of world energy (and nearly all of that from nuclear).
  • Shale technology—arguably a new source of energy wherein hydrocarbons are manufactured from rocks—was pioneered in 1991 by George Mitchell.  Some 25 years later, and with hundreds of billions of dollars of private investment in U.S. shale infrastructure, shale oil and gas have roiled markets but still collectively supply only 3% of world energy.

2. “But what we’re asking ourselves to do here is change energy—and that includes all of transport, all of electricity, all of household usage, and all of industrial usage.”

  • We can add to the list not just all of “industrial usage” but also all data usage.  The global information ecosystem now uses more energy than does global aviation.
  • Everything people use and do, everywhere and always, requires energy, including and especially energy-intensive information-communications technologies:
  • Watching a baseball game on a smartphone uses as much energy as driving a Prius 30 miles. Consuming 100 GB on a smartphone uses the same amount of energy as that required to produce beef for 15 hamburgers
  • Even the digital monetary system uses energy: globally, computers used to create virtual currency, i.e. to ‘mine’ Bitcoins, consume as much energy as do the machines that dig for physical gold.
  • When the world’s 4 billion poor people increase energy use to just 15% of the per capita level of developed economies, global energy use will rise by the equivalent of adding 15 more supertankers (an America’s worth) per day.

3. “[T]he biggest problem for the two lead candidates [wind and solar] is that storage looks to be so difficult.  … We’re more than a factor of 10 away from the economics to get that [grid-scale economic storage].”

  • Electricity is hard to store; economics are only half the problem.
  • All of the annual output from what will become the world’s biggest battery factory—the $5 billion Tesla gigafactory under construction in Nevada—can store just five minutes worth of annual U.S. electric demand.
  • It would require 40 years worth of production from 100 gigafactories in order to build a battery ‘tank’ farm capable of storing enough electricity to match the energy held in the oil tank farm at Cushing, OK, (one of many oil depots in the U.S).

4. “They [clean-energy enthusiasts] have this statement that the cost of solar photovoltaic is the same as hydrocarbon’s. And that’s one of those misleadingly meaningless statements.”

  • To have “parity,” electricity sources have to match both price andavailability precisely because electricity is so difficult to store.  Essentially all kilowatt-hours are produced the same instant they are consumed. Today, 95 percent of America’s power comes from sources that can supply electricity any time it’s needed.
  • Even spontaneous “grid parity” is “meaningless” (i.e., producing a kilowatt-hour for the same price as the grid when the sun is shining) because to match grid-scale availability, photovoltaics would still be about 400% more expensive than conventional grid power because of the extra production equipment and storage needed to ensure availability at any time.

5. “[W]e need innovation that gives us energy that’s cheaper than today’s hydrocarbon energy, that has zero CO2 emissions, and that’s as reliable as today’s overall energy system. And when you put all those requirements together, we need an energy miracle.”

  • Solarwind and battery technologies have improved 150 to 250% in the past half-decade, in terms of energy produced per dollar of capital.  Shale technology, measured the same way over the same time, has improved over 400%.
  • Shale technology has added 100 times more energy supply to America in the past decade than has solar.

6. “I would love to see a tripling, to $18 billion a year from the U.S. government to fund basic [energy] research alone. …  That may make it seem too daunting to people, but in science, miracles are happening all the time.”

  • Federal basic research funding has been in decline, and accounts for less than half of total government R&D spending.
  • Less than 40% all DOE R&D is devoted to basic research, and for other agencies that fund R&D in areas relating to energy, less than 30% is directed at basic science.  The majority of federal R&D funding is directed at “development” and projects, not basic science, thereby turning government R&D policy into de facto industrial policy.
  • About 95% of private-sector R&D spending is directed at “development” and not basic research.

Please read more here.

More Entries